

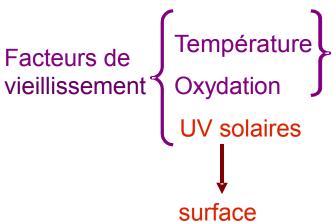
Séminaire de restitution CCLEAR

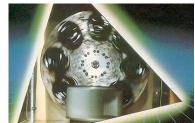
Impact des conditions climatiques sur les infrastructures routières

Action des UV : étude en laboratoire et sur site

03 février 2015

Virginie MOUILLET


Laboratoire d'Aix-en-Provence / Direction Territoriale Méditerranée Cerema virginie.mouillet@cerema.fr


Contexte de l'étude

Sujet de rattachement :

« Etude de la durabilité des infrastructures routières à long terme : Prise en compte du vieillissement des matériaux et de

la fatigue de la structure »

Rolling Thin Film **Oven Test**

« RTFOT »

(NF EN 12607-1)

163° C et 75 min sous air

« PAV»

(NF EN 14769)

100° C et 20h à une pression d'air de 2.1 MPa

Distorsions terrain / laboratoire ⇒ UV non pris en compte ?

Objectifs

Étudier l'effet des UV sur le vieillissement chimique des couches très superficielles des revêtements bitumineux

Situer le vieillissement UV

, Vieillissement de laboratoire (RTFOT + 20 H PAV)

Vieillissement sur route

(Mouillet, V.; Farcas, F.; Chailleux, E.; Sauger, L. "Evolution of bituminous mix behaviour submitted to UV rays in laboratory compared to field exposure" Journal of Materials & Structure, Volume 47, Issue 8, 2014, Page 1287-1299)

Démarche suivie (1)

Comparaison de plusieurs types de vieillissement :
 en laboratoire et sur site - sur <u>enrobé</u> et sur <u>liant modifié</u> seul

Vieillissement sur l'enrobé bitumineux

Vieillissement sur le liant

Exposition aux UV à 44°C et à différents temps de séjour

Vieillissement in situ

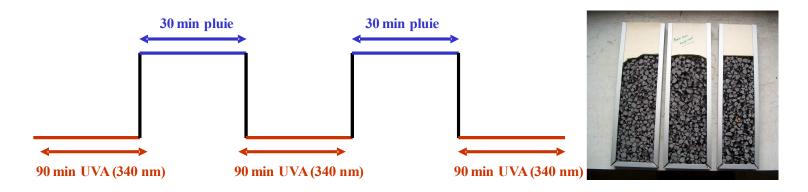
- 12, 26 et 44 mois

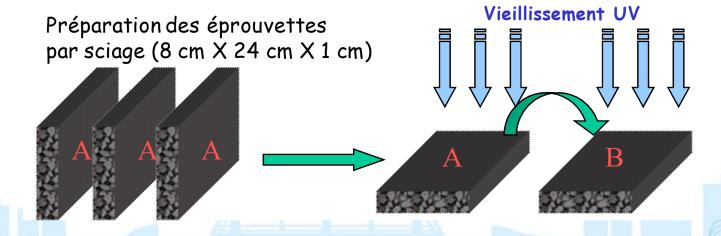
Béton Bitumineux Drainant à base de bitume élastomère (mis en œuvre sur une chaussée fortement circulée du Sud de la France):

- formule granulométrique : 0/10
- épaisseur de la couche : 4 cm
- teneur en liant: 4,5%
- teneur en vides: 24,3%

Simulation du durcissement à court terme (enrobage)

-RTFOT à 163°C-

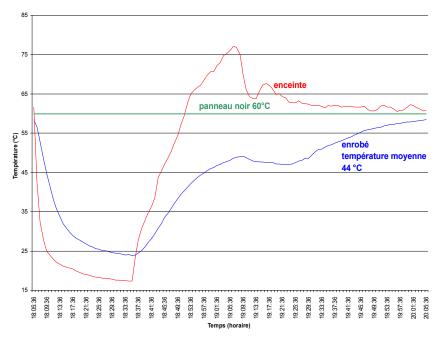

(NFEN 12607-1)


Simulation du vieillissement à long terme (plusieurs années de service)

-RTFOT à 163°C + 20h PAV – (NF EN 14769)

Démarche suivie (2)

 Vieillissement artificiel aux UV de « tranches » d'enrobés : choix de l'appareil Q-UV avec lampes fluorescentes UV-A (NF EN ISO 4892-3)



Démarche suivie (3)

- Mesure de la température moyennes des éprouvettes soumis au rayonnement UV :
 - → découplage de l'effet thermique de l'effet photo-oxydatif

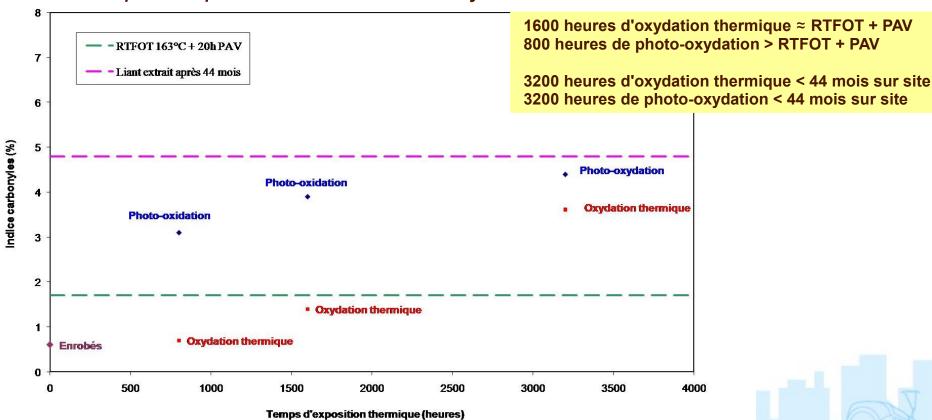
Influence des UV sur le vieillissement en laboratoire des « tranches » d'enrobés

→ Impact sur les caractéristiques physico-chimiques :

Caractéristiques physico- chimiques mesurées	Durée du vieillissement	$\Delta_{((Thermique+UV) - Thermique)}$	Contribution des UV dans le processus global d'oxydation
Température Bille & Anneau (NF EN 1427)	800h	6,6°C	1,4%
	1600h	9,2°C	12,0%
Indice infrarouge des carbonyles	800h	2,4%	77,4%
(Méthode des LPC n°69)	1600h	5,0%	78,1%
Indice infrarouge des sulfoxydes (Méthode des LPC n°69)	800h	2,1%	19,1%
	1600h	1,7°%	15,9%
Indice infrarouge de la partie butadiène du SBS (Méthode des LPC n°69)	800h	0,4%	22,2%

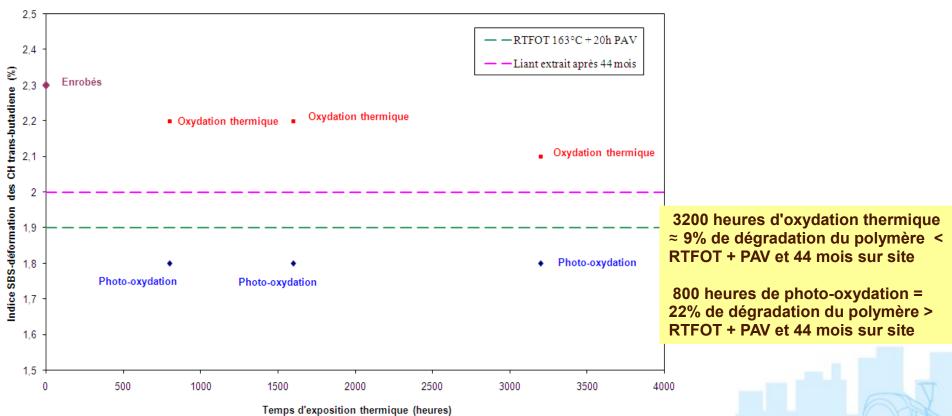
- Effet des UV très prononcé sur la production de carbonyles
- Effet des UV plus modéré sur la production des sulfoxydes et la diminution de la teneur en double-liaison des chaînes butadiène du SBS

Influence des UV sur le vieillissement en laboratoire des « tranches » d'enrobés


→ Impact sur les caractéristiques rhéologiques :

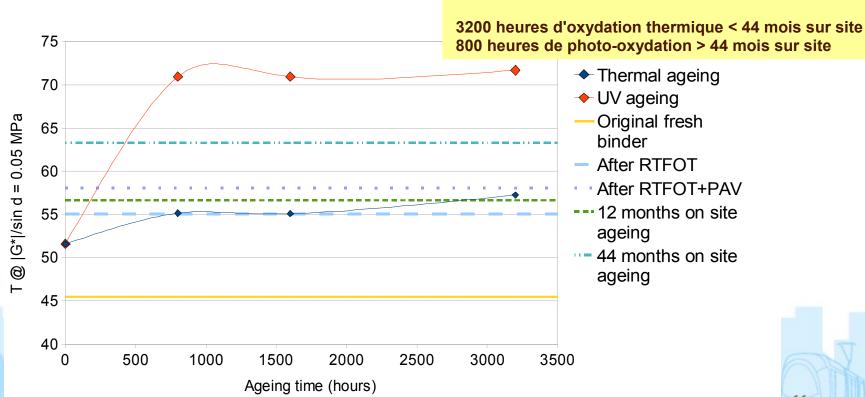
Caractéristiques rhéologiques mesurées	Durée du vieillissement	$\Delta_{((Thermique+UV) - Thermique)}$	Contribution des UV dans le processus global d'oxydation
Température pour laquelle l'angle de phase est égal à 27°	800h	6,2°C	31,8%
	1600h	11,8°C	45,2%
Température pour laquelle l'angle de phase est égal à 45°	800h	9,0°C	22,7%
	1600h	16,1°C	33,8%

- Effet des UV plus marqué pour la température à laquelle l'angle de phase est égal à 27°
- 🕁 capacité du liant à dissiper les contraintes à basse température dépendante des UV


Comparaison des niveaux de vieillissement des enrobés après exposition UV en laboratoire et sur site

→ Cinétique de production des carbonyles

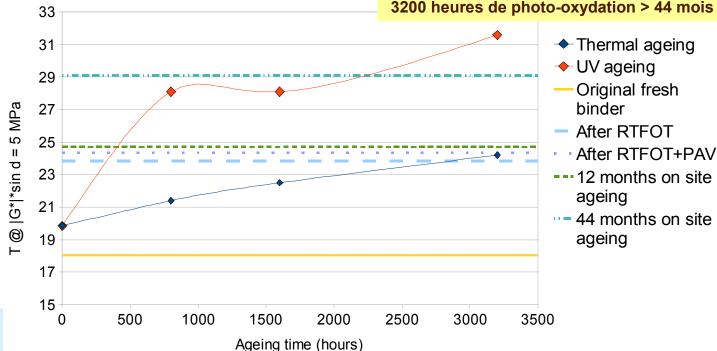
Comparaison des niveaux de vieillissement des enrobés après exposition UV en laboratoire et sur site


→ Cinétique de diminution de la teneur en double-liaison des chaînes butadiène du SBS

Comparaison des niveaux de vieillissement des enrobés après exposition UV en laboratoire et sur site

Cinétique d'augmentation de la température pour laquelle |G*|/sin δ

3200 heures d'oxydation thermique ≈ RTFOT + PAV 800 heures de photo-oxydation > RTFOT + PAV


Comparaison des niveaux de vieillissement des enrobés après exposition UV en laboratoire et sur site

Cinétique d'augmentation de la température pour laquelle |G*|.sin δ

est égal à 5 MPa

3200 heures d'oxydation thermique ≈ RTFOT + PAV 800 heures de photo-oxydation > RTFOT + PAV

3200 heures d'oxydation thermique < 44 mois sur site 3200 heures de photo-oxydation > 44 mois sur site

Synthèse des résultats

- Mise en évidence d'un effet des UV sur le vieillissement chimique des enrobés bitumineux de surface à base de bitume/polymère:
 - Augmentation de la teneur en carbonyles
 - Diminution de la teneur en double liaison des chaînes butadiène du SBS
 - Accroissement de la rigidité du liant
- Comparaison des niveaux de vieillissement des matériaux sous différentes conditions oxydatives:

A) vis-à-vis des propriétés rhéologiques :

- RTFOT + PAV ≈ 3200 heures d'oxydation thermique
- RTFOT + PAV < 800 heures de photo-oxydation
- 44 mois sur site ≈ 3200 heures d'oxydation thermique
- 44 mois sur site ≈ 3200 heures de photo-oxydation

B) vis-à-vis de la production de produits oxygénés :

- RTFOT + PAV ≈ 1600 heures d'oxydation thermique
- RTFOT + PAV < 800 heures de photo-oxydation
- 44 mois sur site > 3200 heures d'oxydation thermique
- 44 mois sur site > 3200 heures de photo-oxydation

Conclusions

- ► Introduction lors du vieillissement simulé en laboratoire des enrobés d'une séquence d'exposition aux UV -> effet des UV significatif
 - ► Accroissement de la vitesse d'oxydation par les UV
- ► Différenciation de la cinétique d'évolution des matériaux selon la présence ou pas de radiations UV :
 - sous-estimation de l'évolution réelle du bitume dans un enrobé en couche de surface par les méthodes normalisées de vieillissement en laboratoire du liant
 - meilleure simulation du vieillissement à long-terme en intégrant les UV à l'oxydation thermique